54 research outputs found

    An Efficient Transport Protocol for delivery of Multimedia An Efficient Transport Protocol for delivery of Multimedia Content in Wireless Grids

    Get PDF
    A grid computing system is designed for solving complicated scientific and commercial problems effectively,whereas mobile computing is a traditional distributed system having computing capability with mobility and adopting wireless communications. Media and Entertainment fields can take advantage from both paradigms by applying its usage in gaming applications and multimedia data management. Multimedia data has to be stored and retrieved in an efficient and effective manner to put it in use. In this paper, we proposed an application layer protocol for delivery of multimedia data in wireless girds i.e. multimedia grid protocol (MMGP). To make streaming efficient a new video compression algorithm called dWave is designed and embedded in the proposed protocol. This protocol will provide faster, reliable access and render an imperceptible QoS in delivering multimedia in wireless grid environment and tackles the challenging issues such as i) intermittent connectivity, ii) device heterogeneity, iii) weak security and iv) device mobility.Comment: 20 pages, 15 figures, Peer Reviewed Journa

    High Quality of Service on Video Streaming in P2P Networks using FST-MDC

    Full text link
    Video streaming applications have newly attracted a large number of participants in a distribution network. Traditional client-server based video streaming solutions sustain precious bandwidth provision rate on the server. Recently, several P2P streaming systems have been organized to provide on-demand and live video streaming services on the wireless network at reduced server cost. Peer-to-Peer (P2P) computing is a new pattern to construct disseminated network applications. Typical error control techniques are not very well matched and on the other hand error prone channels has increased greatly for video transmission e.g., over wireless networks and IP. These two facts united together provided the essential motivation for the development of a new set of techniques (error concealment) capable of dealing with transmission errors in video systems. In this paper, we propose an flexible multiple description coding method named as Flexible Spatial-Temporal (FST) which improves error resilience in the sense of frame loss possibilities over independent paths. It introduces combination of both spatial and temporal concealment technique at the receiver and to conceal the lost frames more effectively. Experimental results show that, proposed approach attains reasonable quality of video performance over P2P wireless network.Comment: 11 pages, 8 figures, journa

    Convolutional auto-encoded extreme learning machine for incremental learning of heterogeneous images

    Get PDF
    In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm

    Towards bio-encapsulation of chitosan-silver nanocomplex? Impact on malaria mosquito vectors, human breast adenocarcinoma cells (MCF-7) and behavioral traits of non-target fishes

    Get PDF
    In this study, we synthesized and bio-encapsulated a chitosan-silver nanocomplex (Ch-AgNPs), characterizing it by UV–Vis spectroscopy, FTIR, EDX, SEM, XRD and Zeta potential analyses. The bio-encapsulated chitosan-Ag nanocomplex (BNC) was efficient as scavenger of free radicals (DPPH and ABTS), if compared to Ch-AgNPs. In toxicity assays against breast cancer cells (MCF-7) the BNC triggered apoptotic pathways, leading to a decline of MCF-7 cell viability with IC50 of 17.79 μg/mL after 48 h of exposure. LC50 of BNC on Anopheles stephensi ranged from 54.65 (larva I), to 98.172 ppm (pupa) while Ch-AgNPs LC50 ranged from 4.432 (I) to 7.641 ppm (pupa). In the field, the application of Ch-AgNP (10 × LC50) lead to A. stephensi larval reduction to 86.2, 48.4 and 100% after 24, 48, and 72 h, while the BNC nanocomplex exhibited 68.8, 36.4 and 100% larval reduction, respectively. Both Ch-AgNPs and the BNC reduced longevity and fecundity of A. stephensi. As regards to non-target effects on fish behavioral traits, in standard conditions, Poecilia reticulata predation on A. stephensi larvae was 70.25 (II) and 46.75 larvae per day (III), while post-treatment with sub-lethal doses of BNC, predation was boosted to 88.5 (II) and 70.25 (III) larvae per day

    Sustainable Green Practice in SMEs – An Examination of VBN Framework for Improving Productivity

    Get PDF
    The last few years have seen an exponential increase in the significance of the environmental agenda at the global level. Despite decades of research, the motivations that drive managers to engage in sustainable green practices remained uncertain. This study examines the degree to which value-belief-norm framework in explaining engagement in sustainable green practices. The data for this study was collected from 260 manufacturing SMEs and was analyzed by employing Structural Equation Modelling. The results indicated that environmental beliefs have a significant positive effect on SME's sustainable green practices, but these effects have not been demonstrated by environmental norms and environmental values. In view of these results, the findings have both policy and education implications as it is believed that a behaviour which encourages manufacturing SMEs to adopt green practices with respect to environmental concerns

    Small manufacturing firms sustainable green practices: Operationalization of sustainable value framework

    Get PDF
    Traditionally, companies and the environment have continuously become two conflicting aspects, where business becomes an environmental risks, and environmental concern become threats to business expansion. However, in recent years, this conflict has progressively been side-lined with the development and implementation of sustainable green practices. The aim of this study is to identify what steps small manufacturing firms can take to successfully implement sustainable green practices into their operations. In order to achieve this, the study proposes the Sustainable Value Framework which is a generic framework through which firms are able to convert their sustainable undertakings into sustainable value. The data of this study was gathered from semi-structured interviews with five small manufacturing firm’s owners/managers. The findings shows that small manufacturing firms are challenged to strike a balance between the components of the SVF and status quo concerning firm’s current sustainable green practices. The findings also reveal that creating long term sustainable value from the implementation of sustainable green practices challenges small manufacturing firms to successfully operationalize considerations relative to each of the four quadrants of the Sustainable Value Framework. The imperial findings and practical implications offer an indicator encouraging other manufacturing firms to hop on the Go-green bandwagon, particularly those without any green practice in place

    Green Initiatives Adoption: Perspective of E&E Manufacturing SMEs Sustainability

    Get PDF
    In recent years, the importance of the environmental agenda for the industry has been rising exponentially at the international level. Additionally, increasing consumers' awareness on the environmental impact of their consumption choices and their willingness to reduce their ecological footprint has created new market opportunities for manufacturers. Sustainable green practices have become the conscientious imperative expected from all manufacturing industries due to rising environmental awareness among today's society. Therefore, the objectives of this research were to determine the extent of green initiatives implementation in Electrical and Electronics (E&E) manufacturing SMEs as well as to examine the relationship between those practices and sustainable green practices. The quantitative data was obtained through a survey of 260 E&E manufacturing SMEs located throughout Malaysia. Analysis of the findings showed that there is an encouraging level of sustainable green practice implementation among the SMEs, with optimization of water conservation initiative as being the top priority and followed by energy efficiency. The result also revealed that waste management initiative not significantly affected sustainable green practices. The findings of this research provide new directions for future research and key implications concern the importance for firms and policymakers to work with sustainability issues using both internal and external perspectives

    Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes

    Get PDF
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW–AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW–AgNP showed plasmon resonance reduction in UV–vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW–AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW–AgNP were toxic to Anopheles stephensi larvae and pupae, LC50 were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW–AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW–AgNP IC50 were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC50 were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW–AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW–AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW–AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW–AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies

    Fabrication of nano-mosquitocides using chitosan from crab shells: impact on non-target organisms in the aquatic environment

    Get PDF
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV–vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8–10 ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments
    corecore